

Reports:

FLO 10-01-53 R007 Mark Series Assessment Report V1 R1

FLO 10-01-53 R003 V1R1 -Flowserve Survivor FMEDA Report

Validity:

This assessment is valid for Survivor valve

This assessment is valid until July 1, 2013. Revision 1.0 June 29, 2010

Certificate / Certificat Zertifikat / 合格証

FLO 10-01-53 C003

exida hereby confirms that the:

Survivor valve

Flowserve Corporation Springville, UT - USA

Has been assessed per the relevant requirements of:

IEC 61508 Parts 1, 2

and meets requirements providing a level of integrity to:

Systematic Integrity: SIL 3 Capable

Random Integrity:

Type A; SIL must be verified for the entire final element application

Safety Function:

The valve will move to the designed safe position when deenergized / energized within the specified safety time.

Application Restrictions:

The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.

The Sale

Product Assessor

Auditor

Page 1 of 2

Certificate / Certificat / Zertifikat / 合格証

FLO 10-01-53 C003

Systematic Integrity: SIL 3 Capable

Random Integrity:

Type A, SIL must be verified for the entire final element application

Survivor valve

Flowserve Corporation Springville, UT - USA

SIL 3 Capability:

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated without "prior use" justification by end user or diverse technology redundancy in the design.

Failure rates Survivor valve (Clean Service)

	λ _{sd} (FIT)	λ _{su} ¹ (FIT)	λ _{dd} (FIT)	λ _{du} (FIT)
Full Stroke	0	1055	0	805
Tight Shutoff	0	321	0	1539
Open to Trip	0	1507	0	354
Full Stroke with PVST	0	1055	192	613
Tight Shutoff with PVST	0	321	192	1347
Open to Trip with PVST	634	873	192	162

¹ It is important to realize that the "no effect" failures are included in the "safe undetected" failure category according to IEC 61508. Note that these failures on their own will not affect system reliability or safety, and should not be included in spurious trip calculations

Certification Services 64 N Main St Sellersville, PA 18960

Form	Version	Date
C61508	2.3	May 2010

SIL Verification:

The Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) must be verified via a calculation of PFD_{AVG} considering redundant architectures, proof test interval, proof test effectiveness, any automatic diagnostics, average repair time and the specific failure rates of all products included in the SIF. Each subsystem must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements.

* FIT = 1 failure / 10⁹ hours