

High-efficiency Impeller Reduces Energy Usage and Shaft Wear

ISO 13709/API 610 (BB2) Process Pump Upgrade

- **The Challenge:** A major refinery was experiencing high energy costs from one of its severe duty process pumps the result of changing system requirements. Pump efficiency was far from optimum levels and reliability issues from off-design-point operation were a concern.
- **The Solution:** Flowserve engineers designed a comprehensive hydraulic and mechanical upgrade solution that delivered immediate reliability improvements and an energy cost savings payback in well under one year of operation.

A reduction in required flow rate left a severe duty ISO 13709/API 610 (BB2) refinery pump operating far from its best efficiency point (BEP), resulting in excessive energy consumption. While trimming the existing pump impeller could have delivered the required flow rate, this would have left the pump operating well back from BEP, providing less than optimal efficiency.

Reducing Energy Consumption

Flowserve engineers made the following recommendations to achieve maximum efficiency from the existing pump at the new design point.

- Install a new, high-efficiency impeller that would also offer a steeper performance curve to increase operating stability during system transients
- Increase the number of vanes in the diffuser and alter the rim geometry to reduce pressure pulsations

Eliminating Abnormal Shaft Wear

While assessing possible solutions to reduce energy consumption, Flowserve engineers also performed a rotor-dynamic analysis to explore the cause of another issue – excessive shaft wear. This analysis revealed the pump was running very close to its second critical speed.

To resolve the issue, Flowserve engineers proposed shortening the bearing span, which would push the second critical speed well above the operating speed. To do so, the engineers designed a modification to replace unused cooling jackets with a mounting flange that would accept a different bearing housing design with a shorter bearing span.

FINANCIAL BENEFITS

Original Annual Energy Cost

Total Energy Cost (0.06/kW•h)	USD 115 632
Energy Consumed	1 927 200 kW∙h
Annual Running Hours	8760 hr
Power Consumption	220 kW

Revised Annual Energy Cost

314 000 kW∙h
760 hr
50 kW

Pump Upgrade Cost

Total Upgrade Cost	USD 26 000
Labor	
Parts	
Design Study	

Two-Year Cost Savings	
Original Energy Cost	USD 231 264
Revised Energy Cost	USD 157 680
Upgrade Cost	USD 26 000
Two-Year Energy Cost Savings	USD 47 584

Bottom Line Impact

The pre-upgrade assessment clearly indicated significant energy consumption savings would be achieved from the recommended upgrades. This financial analysis did not include operational savings that would also be realized from extended plant uptime as a result of the improved rotor-dynamics. When implemented, the upgrade delivered the results shown.

Bulletin FSG-SS-001a (E) Printed in USA. July 2010. © Flowserve Corporation

To find your local Flowserve representative:

For more information about Flowserve Corporation, visit www.flowserve.com or call USA 1 800 728 PUMP (7867)

USA and Canada

Flowserve Corporation 5215 North O'Connor Blvd. Suite 2300 Irving, Texas 75039-5421 USA Telephone: 1 937 890 5839

Europe, Middle East, Africa

Flowserve Corporation Gebouw Hagepoint Westbroek 39-51 4822 ZX Breda Netherlands Telephone: 31 76 502 8920

Latin America

Flowserve Corporation Martín Rodriguez 4460 B1644CGN-Victoria-San Fernando Buenos Aires, Argentina Telephone: 54 11 4006 8700 Telefax: 54 11 4714 1610

Asia Pacific

Flowserve Pte. Ltd. 10 Tuas Loop Singapore 637345 Telephone: 65 6771 0600 Telefax: 65 6779 4607

flowserve.com

High-efficiency Impeller Reduces Energy Usage and Shaft Wear

ISO 13709/API 610 (BB2) Process Pump Upgrade

- **The Challenge:** A major refinery was experiencing high energy costs from one of its severe duty process pumps the result of changing system requirements. Pump efficiency was far from optimum levels and reliability issues from off-design-point operation were a concern.
- **The Solution:** Flowserve engineers designed a comprehensive hydraulic and mechanical upgrade solution that delivered immediate reliability improvements and an energy cost savings payback in well under one year of operation.

A reduction in required flow rate left a severe duty ISO 13709/API 610 (BB2) refinery pump operating far from its best efficiency point (BEP), resulting in excessive energy consumption. While trimming the existing pump impeller could have delivered the required flow rate, this would have left the pump operating well back from BEP, providing less than optimal efficiency.

Reducing Energy Consumption

Flowserve engineers made the following recommendations to achieve maximum efficiency from the existing pump at the new design point.

- Install a new, high-efficiency impeller that would also offer a steeper performance curve to increase operating stability during system transients
- Increase the number of vanes in the diffuser and alter the rim geometry to reduce pressure pulsations

Eliminating Abnormal Shaft Wear

While assessing possible solutions to reduce energy consumption, Flowserve engineers also performed a rotor-dynamic analysis to explore the cause of another issue – excessive shaft wear. This analysis revealed the pump was running very close to its second critical speed.

To resolve the issue, Flowserve engineers proposed shortening the bearing span, which would push the second critical speed well above the operating speed. To do so, the engineers designed a modification to replace unused cooling jackets with a mounting flange that would accept a different bearing housing design with a shorter bearing span.

Experience In Motion

FINANCIAL BENEFITS

Original Annual Energy Cost

Total Energy Cost (0.06/kW•h)	USD 115 632
Energy Consumed	1 927 200 kW∙h
Annual Running Hours	8760 hr
Power Consumption	220 kW

Revised Annual Energy Cost

Revised Energy Cost (0.06/kW•h)	USD 78 840
Energy Consumed	1 314 000 kW∙h
Annual Running Hours	8760 hr
Power Consumption	150 kW

Pump Upgrade Cost

Total Upgrade Cost	USD 26 000
Labor	
Parts	
Design Study	

Two-Year Cost Savings	
Original Energy Cost	USD 231 264
Revised Energy Cost	USD 157 680
Upgrade Cost	USD 26 000
Two-Year Energy Cost Savings	USD 47 584

Bottom Line Impact

The pre-upgrade assessment clearly indicated significant energy consumption savings would be achieved from the recommended upgrades. This financial analysis did not include operational savings that would also be realized from extended plant uptime as a result of the improved rotor-dynamics. When implemented, the upgrade delivered the results shown.

Bulletin FSG-SS-001a (E/A4) Printed in USA. July 2010. © Flowserve Corporation

To find your local Flowserve representative:

For more information about Flowserve Corporation, visit www.flowserve.com or call USA 1 800 728 PUMP (7867)

USA and Canada

Flowserve Corporation 5215 North O'Connor Blvd. Suite 2300 Irving, Texas 75039-5421 USA Telephone: 1 937 890 5839

Europe, Middle East, Africa

Flowserve Corporation Gebouw Hagepoint Westbroek 39-51 4822 ZX Breda Netherlands Telephone: 31 76 502 8920

Latin America

Flowserve Corporation Martín Rodriguez 4460 B1644CGN-Victoria-San Fernando Buenos Aires, Argentina Telephone: 54 11 4006 8700 Telefax: 54 11 4714 1610

Asia Pacific

Flowserve Pte. Ltd. 10 Tuas Loop Singapore 637345 Telephone: 65 6771 0600 Telefax: 65 6779 4607

flowserve.com