USER INSTRUCTIONS

Installation Operation Maintenance

Valtek FlowTop General Service Control Valve

General Service Control Valve Type V750 and V752 FCD VLEEIM1485-04 11/22

This document is the 'Original Instructions'

Experience In Motion

General Service Control Valve - Valtek FlowTop

The Valtek FlowTop product line is low cost, compact and light-weight. Yet, it is rugged and can be used safely and confidently in a wide range of general service applications plant-wide. Its modular design provides trim and material options to suit most service situations. Simplicity of design reduces maintenance and parts inventory costs. It is ideally suited for flow and pressure control of liquid and gas media in oil and gas, power, chemical and petrochemical processing and related industries. The Valtek FlowTop control valve package provides flow rates, control accuracy and reliability at levels comparable to special engineered service control valves, but at a significantly lower cost. The Valtek FlowTop is manufactured to ISO 9001 standards.

The following instructions are designed to assist in unpacking, installing and performing maintenance as required on Flowserve Valtek FlowTop control valves. This instruction manual does not include specific product design data. Such data can be found on the valve's serial plate or specification documents; additionally, dimensional information can be found in the Valtek FlowTop technical bulletin. Procure needed documents as necessary before you begin any work on the valve.

User Instructions cannot deal with all possible situations and installation options. It is required that only trained and qualified technicians are authorized to adjust, repair or work on control valves, actuators, positioners and other accessories. Review this bulletin prior to installing, operating or performing any maintenance on the valve. Additional Installation, Operation, and Maintenance Instructions (IOMs) cover other features (actuators, handwheels, packing and positioners).

To avoid possible injury to personnel or damage to valve parts, WARNING and NOTICE indicators must be strictly followed. Modifying this product, substituting non-factory parts or using maintenance procedures other than outlined could drastically affect performance and be hazardous to personnel and equipment and may void existing warranties. This manual should be used in conjunction with applicable local and national laws. Failure to comply with User Instructions will render the manufacturer's guarantee and liability null and void. Unless otherwise agreed, the manufacturer's general terms and conditions of sale shall apply.

Read the user instructions carefully before use. Keep for future reference.

3

Contents

- 1 Scope of Manual
- 2 Intended Use 3 Product Identification 3 3 Valtek FlowTop Modification 3 - 4 4 5 Safetv 4 Packaging and Transport 6 4 7 Storage 4 8 Unpacking 4 - 5 9 Installation 5 - 7

10	Valve Quick-Check	8 - 9
11	Valve Maintenance	9 - 11
12	Troubleshooting	11 - 12
13	Disassembly and Reassembly	13 - 21
14	Torque Requirements	22
15	Lubricants	23
16	Special Tools	23
17	Disposal	23
18	Parts List	24 - 25

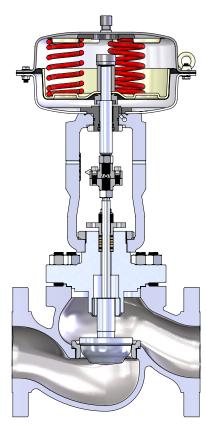


Figure 1: Valtek FlowTop V750 with screwed seat

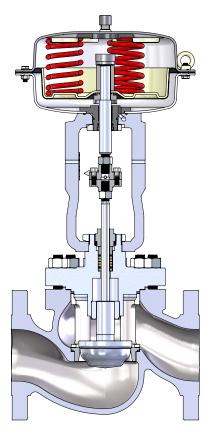


Figure 2: Valtek FlowTop V752 with clamped seat

1 Scope of Manual

The following user information covers the Valtek FlowTop general service control valve:

- Screwed seat Type V750, clamped seat Type V752
- English ASME Units Class 150 & 300, NPS 1/2 6
- Assembled with a pneumatic actuator
- Comes with or without ancillary equipment

2 Intended Use

Control valves are pressure vessels designed and rated for specific application conditions. Before installation, check the serial number and / or the tag number to ensure that the valve and actuator being installed are correct for the intended application. Do not use the valve outside of its rated design limits. Exceeding the design limits may cause hazardous conditions including leakage of the process media or rupture of the pressure boundary resulting in possible process loss, equipment or environmental damage, or serious personal injury or death.

The specific product design data can be found on the valve's serial plate, data sheet and the calculation sheet (in acc. to the IEC 60534-7:2010).

The noise level emitted by control valves is always determined by the operating data and the installation situation and is different for each application. There is no general typical value for this. In any case, technical measures are used to try to keep this below 80 dB(A). The individually expected pre-calculation noise level can be found in the calculation data sheets.

The Valtek FlowTop handles a wide variety of general service applications, while offering high flow capacity. All sizes come standard with unbalanced trim; for high pressure drop applications optional pressure balanced trim is available for NPS size 3 to 6.

The Valtek FlowTop consists of the body, bonnet, trim, and actuator. The valve is designed with a high level of interchangeability allowing the user to assemble the greatest possible number of variations from a minimum number of components to match each application. There are five bonnet designs: standard bonnet or extended bonnet (either as unbalanced or pressure balanced), and bellows seal bonnets.

The Valtek FlowTop is designed in compliance with **EN 1349:2009** - Industrial Process Control Valves (DIN EN 1349 and VDE 0409-1349).

The Valtek FlowTop is designed for use in **MODERATE** and **WORLDWIDE** environmental conditions. However, the intended use of the pneumatic actuators and the accessories is limited by their permissible ambient temperature application

limits. When operated in the moderate range, a service life of 7 to 10 years can be expected before servicing. Leaks can occur at low temperatures (-60°C to -25°C), at high temperatures permanent damage to the elastomers (+60°C to +80°C, expected service life then < 1 year). Humidity up to 93% non-condensing, air pollution up to 300 μ g/m3 unless restricted by accessories.

The product offering may include optional ancillary equipment, such as positioners, air-filter regulators, solenoid valves, limit switches or boosters. Digital, I/P, or pneumatic positioners can be mounted directly, with a mounting bracket or according to NAMUR standards. Refer to the relevant manufacturer's user instructions for information regarding other ancillary equipment.

3 Product Identification

Each Valtek FlowTop (V750 and V752) control valve comes with an attached serial plate which includes key information specifically for each control valve:

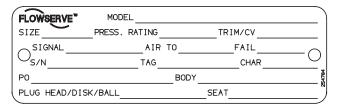


Figure 3: Serial Plate (WW-design, WorldWide)

Figure 4: Serial Plate (EU-design, European Union)

The same serial number shown on the plate will appear on all Valtek FlowTop data sheets, dimensional drawings, bills of material, and spare parts lists. Other information located on the serial plate is self-explanatory for the Valtek FlowTop control valve.

You can download .pdf versions of the Valtek FlowTop documentation including a technical bulletin and user instructions at **www.flowserve.com**. It is the user's responsibility to keep this and related documentation on file and accessible for the Valtek FlowTop product.

4 Valtek FlowTop Modification

Valtek FlowTop control valves are generally delivered as tested and assembled units, with factory-mounted actuators. Unauthorized modification of the Valtek Flow-Top control valve voids the product test certification and product warranties, could drastically affect product performance, and could be hazardous to personnel and equipment.

NOTICE Before Valtek FlowTop re-use, all necessary tests must be repeated and recorded in compliance with all test routines, guidelines and engineering standards.

5 Safety

Safety terms - WARNING and *NOTICE* - are used to highlight specific dangers and / or provide additional information that may not be readily apparent in the User Instructions. WARNING directions must be strictly followed.

WARNING indicates that severe personal injury,

death and substantial property damage can occur if proper precautions are not taken.

NOTICE indicates practices or provides additional technical information.

Green fields indicate safety-related informations.

6 Packaging and Transport

Pay close attention to shipping marks and transport pictograms.

Careful packing, loading and transport arrangements are required to prevent products from being damaged during transport. Standard packaging includes a cardboard box, with or without a wooden pallet base as needed. Special packaging may include a wooden box. Packaging may use cardboard, plastic wrap, foam, or paper as packing material. Filling material may be a carton type or paper.

4 Shipping marks display product and package dimensions and

weight (for further information see Packaging and Sending Instructions, Form L 002). Packing guidelines for export follow HPE standards. (Nonreturnable packaging may contain up to 90% recyclable materials.)

7 Storage

Maximum storage time for control valves is 6 months.

NOTICE

The packing box begins to break down after 6 months. Leakage may develop.

Upon arrival on site, store the Valtek FlowTop on a solid base in a cool, dry closed room. Until its installation, the valve must be protected from the weather, dirt and other potentially harmful influences.

Do not remove the protective covers from the body flanges of the control valve or from the instrument ports of the actuator and accessories until the valve is ready for installation at the site.

8 Unpacking - Lifting

Hoisting and lifting are inherently dangerous activities and require safe rigging and proper training to mitigate hazards. Use standard industry safety practices, personal protection, and warranted lifting devises.

Crushing hazard ! Arrange rigging to prevent tipping of the control valve. Do not allow the valve assembly to rotate during removal. Do not stand under suspended loads. Failure to do so can cause serious personal injury and damage the valve or nearby equipment.

NOTICE Be aware that the center of gravity may be above the lifting point. Do not allow the sling to touch the stem, travel indicator or peripheral equipment. Observe the maximum permitted working load limit.

Flowserve is not a transport and lifting company. It is the responsibility of the persons commissioned on site to carry

out these tasks in accordance with good and relevant rigging and lifting practices and in compliance with the currently applicable rules. The proposals presented are tried and tested methods from the manufacture of control valves. We are in no way responsible for the local practices that result from the suggestions made here. The situation, the possibilities and the requirements on the plant site are simply too individual and must be included in the planning and realization of this task. The aim is to ensure safe and trouble-free operation because of rigging and lifting.

WARNING

Due to the design, sharp edges cannot be completely avoided - al-

ways wear cut-resistant gloves and safety shoes.

The stem of the valve and actuator are burnished, sealing surfaces are carefully machined, any damage inevitably leads to premature wear and leakage during subsequent operation. Control valves are supplied with accessories, piped, adjusted, and tested in the factory. Damage to the supply piping, to the lever mechanism of the positioner or to the limit switch or in general to the built-on accessories leads to malfunctions, which must be repaired before commissioning and for which the manufacturer is not liable.

- 1. Check the packing list against materials received to ensure all components and accessories are present.
- 2. Control valves are usually packaged lying down and arrive at their place of installation. There they must be properly erected to be transported to their final location.
- 3. Small valves under 23 kg are usually moved by hand, see Figure 5 for suggestions for handling heavier valves.

WARNING Ring nuts and Ring bolts according to DIN 580 and DIN 582 may only be loaded in the longitudinal direction of the ring plane, considering their load capacity. Inclined loads or transverse loads are not permitted!

- 4. Upon removing the control valve from the packaging, we recommend that you:
 - Promptly touch up any damage to the corrosion protection.
 - Contact your shipper immediately to report any damage.
 - Call your Flowserve representative if you experience any problems.
 - Do not remove the protective covers from the body flanges of the control valve or from the instrument ports of the actuator and accessories until the valve is ready for installation at the site.

Suggested rigging method / maximum load capacity:

Figure 5: Valtek FlowTop rigging method

9 Installation

The control valve must be installed and commissioned by qualified staff - personnel who are familiar with the installation, commissioning and operation of this product and possess the relevant qualifications in their field of activity.

The successful sizing and selection of control valves depends on the knowledge of the actual process condi-NOTICE tions in the system in which the valve will be installed. This clear information about the operating conditions is not always available. However, the more assumptions made about the flow conditions, the less accurate the sizing of the control valve. Basically, control valves are designed according to the operating data specified by the customer. The following standards can be used to calculate control valves: Kv value calculation - EN 60543-2-1, ANSI / ISA 75.01.01 and noise calculation - EN 60534-8-3, EN 60534-8-4, VDMA 24 422/1979/1989 (withdrawn). If these calculations attest a critical valve operating condition, the selection of suitable trims divides these into several uncritical throttle points. Since all these calculations consider only the punctual installation location of the valve, these are only valid under the condition of an "undisturbed pipe flow profile". This pipe flow can only be achieved by professional piping - according to the recognized rules of technology - with sufficient distance to sources of interference such as pumps, bends, T-pieces, pipe extensions, pipe reducers or other valves. Yes, even improperly executed welds near the control valve can affect design accuracy and adversely affect the predicted valve behavior. The minimum SPR (straight piping run) should be 0.5 meters or 6 x DN upstream and downstream of the valve. In case of problematic operating conditions (cavitation, evaporation, two-phase flow, noise, excessive medium speeds, etc.) double the downstream section. As a preventive measure, vibration situations and pressure pulsations in the pipeline can be identified by pulsation studies (VDI 3842) by the plant planner or operator and avoided by suitable planning measures. Experience has shown that control valves are operated continuously with a workload of 10 - 90%. In particular, continuous operation < 10 % can damage the control valve. Subsequent changes using a modified interior trim are only possible to a limited extent and do not always lead to success. In the worst case, such a problem can be resolved only by a subsequent expensive pipe change. Flowserve Control Valves GmbH is a manufacturer of valves, not a piping contractor. Our expertise is in the design and manufacture of control valves. This does not include piping design and layouts. It is in the responsibility of the plant planner / operator to install the valve to good piping practices. We kindly provide this information based on our wealth of experience and expressly emphasize that we cannot in any way accept responsibility for the actual performance of a pipeline installation resulting from the recommendations given here.

As a rule, it should be assumed that the shorter the straight pipe run before a valve, the higher the probability of turbulent flow into the valve.

Prior to installation of the valve, we require, that you check the following conditions to reduce the risk of malfunction and safety related incidents.

No.	Check	Possible malfunction or safety related incident
1	Confirm that the nominal / operational data on the serial plate matches the operational data of the facility.	An operational mismatch can cause considerable damage to the valve or may lead to a failure at the facility.
2	Confirm that the line is clear of dirt, welding slag, chips, scale or other foreign material.	The risk of control valve damage due to foreign particles will be reduced if a suitable strainer is installed upstream of the valve. (Suggested mesh size of 0.004 inch (0,1 mm)
3	Confirm the piping flanges are coaxial, parallel, and correspond with the face-to-face dimension of the valve.	Incompatible sizing may result in excessive tension, valve malfunction or flange connection leakage.
4	Confirm the piping is routed correctly and the valve is free of additional piping forces.	Incorrect routing may result in leakage and / or potential valve failure.
5	Confirm that the control valve can be installed in an upright position whenever possible.	Non-upright positioning may increase wear in the packing, resulting in leakage and premature wear.

No.	Check	Possible malfunction or safety related incident		
6	Confirm the actuator has enough overhead clearan to disassemble the plug from the valve body.	≈ R		
		Removal space		
		Height of actualor		
	Actuator Code Removal Space ≈ R 253 mm inch mm inch 503 180 7.1 290 11.4	and a contract of face		
	701 330 13.0 Table 2: Overhead clearance dimensions	dimensions Figure 6: Overhead clearance drawing		
7	Confirm there are suitable straight piping run u stream and downstream of the valve installation site order to minimize a sudden pressure surge in the flo	in conditions and cause unacceptable levels of noise and		
8	Confirm removal of all hazards and ensure appropria protective measures are in place.	te none		
9	Confirm flow direction to ensure the correct val installation. Flow direction is indicated by the arrow of the valve body.			
10	Confirm that the air supply and instrument sign lines are dry and clear of dirt and oil.	al At a minimum, the instrument air must conform to ISA- 7.0.01- 1996 (ISO 8573-1 Compressed Air - Class 2) requirement or those of the accessory manufacturer.		
11	Confirm the valve is grounded in order to prevent a electrical discharge.	n Noncompliance may result in electrical discharges.		
12	Confirm that the bonnet bolting of valves used NACE MR 0175 / MR 0103 or ISO 15 156 application are ventilated.			
13	Throttling control valves are typically equipped wi a pneumatic actuator and valve positioner. Refer the appropriate positioner manual for connection and maximum air supplies.	o per the actuator serial plate. An air filter regulator should be		

Table 1: Basic safety massages for installing the valve

After these requirements are confirmed the valve can be installed and connected in the piping.

1. Remove the protective flange covers and coating from the control valve; clean the flange gasket surface.

NOTICE Unsuitable cleaning agents can damage and cause leakage in PTFE and graphite gaskets. Consult a current chemical resistance list before applying.

2. Install the control valve in an upright position whenever

possible. Vertical installation permits easier valve maintenance.

- 3. Install and connect the control valve to the pipeline. Locate gaskets in the center of the body flanges and secure nuts and bolts.
- 4. Connect the power supply and instrument signal lines.

10 Valve Quick-Check

Apply appropriate personal protective equipment when working on the control valve to prevent hazards arising from the operation. Protect yourself against freezing, burns and cuts by wearing appropriate protective clothing, gloves and eye protection.

Do not over-tighten packing.

Sudden exposure of the control valve to full working pressure and temperature may cause stress cracks.

Prior to valve operation, we require, that you check the following conditions to reduce the risk of malfunction and safety related incidents.

No.	Important information	Possible malfunction or safety related incident
1	Avoid critical operating conditions where excessive noise or vibration levels might occur.	Impermissible continuous operation of a control valves under critical conditions can damage the valve.
2	Avoid frequent system start-ups and shutdowns.	Critical operating conditions, which can damage the control valve, may be encountered during system start-up or shut down.
3	Keep the operating medium free of foreign particles.	Installing a suitable strainer upstream of the control valve can prevent foreign particles from damaging the valve.
4	Instrument air must conform to ISA 7.0.01-1996 (with a dew point at least 18°F (10°C) below ambient temperature, particle size below 1 μ m and oil content not to exceed 1 ppm)	Contaminated instrument air can damage the accessories and control valve or cause them to fail.
5	Do not touch the body and bonnet ! The tempera- ture of the operating medium is transferred to the surface of the linear actuator.	Excessive hot surface temperatures can put you at risk for burns. Frigid surface temperatures can put you at risk for freezing.
6	Critical operating conditions can cause excessive or hazardous levels of vibration or noise.	Impermissible levels of vibration can cause hearing loss, vascular and nerve damage and damage to joints and bones. Use hearing protection when noise levels exceed 80 dB(A).
7	Incorrect maintenance can result in the emission of hot, cryogenic, and / or toxic operating media.	Incorrect maintenance can put you at risk for heat related burns, freezing, acid burns or poisoning.

Due to risk of crushing hazard, do not work between the yoke legs while the valve is in operation.

Prior to start-up, we strongly recommend that you:

1. Stroke the valve and compare the plug position indicator on the stem clamp to the stroke indicator plate. The plug should change position in a smooth, linear fashion.

If over tightened, excessive friction may impair smooth control.

- 2. Adjust instrument signals to ensure a full stroke.
- 3. Check the packing box bolting to ensure the correct adjustment (See Section 11: Valve Maintenance).

Over tightening can cause excessive packing wear and high stem friction that may impede plug movement.

4. Continuously increase load until operation parameters are reached.

5. Minor relaxation of the flange bolting is possible after initial assembly. Retorgue the bonnet flange bolting if necessary before installation or following an initial temperature excursion to ensure the bonnet gaskets do not leak (See Table 4).

Pressure	Class	Class 150 ¹⁾		300 ¹⁾
Size	Nm	ft lb	Nm	ft lb
1/2"				
3/4"	15	11	15	11
1"				
1 1/2"	17	13	21	16
2"	22	16	27	20
3"	26	19	43	32
4"	46	34	76	56
6"	76	56	146	108

¹⁾ V750 is designed for Class 150 while V752 is desigend for Class 300

Table 4: Recommended Body Bolt Torque Values

11 Valve Maintenance

Maintenance intervals and service life of a valve can only be determined empirically on site. The intervals specified in the User Instructions are recommendations and serve only as a guide. Under problematic operating conditions, maintenance intervals may be significantly reduced. We strongly recommend a site survey followed by establishing a documented procedure for performing the maintenance work. Maintenance personnel should perform and log the work accordingly. The data collected can be used as a basis for dynamically determining the maintenance intervals and activities.

	Recommended Maintenance Actions					
No.	Service	Inter-	Valve Condition			
NU.	Service	val	Good	Adequate	Inadequate	
1	Visual inspection of the valve	Bi- weekly	No action	Clean valve stem with a soft cloth	Overhaul or replace valve after product lifecycle	
2	Visual inspection of the packing	Bi- weekly	No action	Retighten leaky packing box	Replace leaky packing box immedi- ately	
	Preventive change of the PTFE-packing	\rightarrow	Dependent upon results of previous maintenance (see numbers 1 and 2 above) or a minimum of once every 24 months			
	Preventive change of the Graphite-packing	\rightarrow	Dependent upon results of previous maintenance (see numbers 1 and 2 above) or a minimum of once every 18 months			
3	Visual inspection of body bolting	Yearly			Remove from service and replace body bolting immediately if gasket leakage persists or if bolting is damaged	
4	Visual inspection of the actuator	Bi- weekly			Overhaul or replace actuator after prod- uct lifecycle	
5	Preventive overhaul of the valve	\rightarrow	Dependent upon results of previous maintenance (see numbers 1 to 4 above) or a minimum once every 60 months			
6	Operation test	\rightarrow	No action Perform 3 full strokes if packing and / or bonnet tightening is modified; check for leakage			

9

R	Recommended maintenance actions using the Logix digital positioner with ValveSight diagnostic solution software					
No.	Service	Inter-	Valve Condition			
NU.	Service	val	Good	Adequate	Inadequate	
7	Visual inspection of diagnostic interface	Weekly	No action - valve is healthy	Take action per warning	Overhaul or replace required part per alarm	
8	Check health parameter of valve	Warn- ing	No action - valve is healthy	Replace packing box compo- nents per warning	Overhaul or replace valve after alarm	
9	Check health parameter	Warn- ing	No action - actuator is healthy	Check and retighten air supply	Overhaul or replace actuator after alarm	
10	Check health parameter	Warn- ing	No action - control is healthy	Overhaul or replace valve; trim and bonnet components must be checked and / or repaired after alarm		
11	Check health parameter	Warn- ing	No action - positioner is healthy	Start step test	Overhaul or replace positioner after alarm	

Table 5: Service activities check list

Prior to valve operation, we require, that you check the following conditions to reduce the risk of malfunction and safety related incidents.

No.	Check	Possible malfunction or safety related incident					
1	Check the packing follower for proper tightness.	The standard version is described here. Further details are described on pages 19, 20, 22. The packing follower is factory adjusted. If leakage is detected around the packing followe. tighten it clockwise using a wrench in quarter turn intervals until the leakage stops.					
		Wrench SizeAdjustment IntervalMaximum AdjustmentSW 24~ 15/16 AFone,SW 32~ 11/4 AFquarter turnthree-quarter turnSW 46~ 113/16 AFone complete turn					
		Table 7: Packing Adjustment					
	I	Do not overtighten packing.					
	Overtightened packing can cause excessive packing we high stem friction that may impede plug movement.						
		If leakage cannot be stopped, the packing must be replaced.					
2	Check for signs of gasket leakage through the bonnet and end flanges.	<i>Tighten the bonnet bolting nuts. See Section 13: Disassembly and Reassembly for instructions. Also see Table 4 in Section 10.</i>					
3	Check if all nuts and bolts are securely fastened.	Avoid critical operating conditions if excess noise or vibration levels occur during operation.					
4	Check valve for smooth, full-stroke operation. Un- steady stem movement could indicate an internal valve problem.	Internal valve failure requires an immediate overhaul or control valve replacement by qualified stuff.					

Table 6: Basic safety massages for maintenance the valve

After these requirements are confirmed proceed with valve maintenance.

Crushing hazard ! Failure to keep hands, hair, and clothing away from all moving parts when operating the control valve can cause serious injury.

- 1. Clear all dirt and / or foreign material from the plug stem and control valve.
- 2. If leakage is detected, retighten the packing follower by one full turn clockwise (See Table 7: Packing Adjustment).
- 3. If retightening packing does not stop the leakage, overhaul the control valve and replace the packing (See Section 13: Disassembly and Reassembly).
- 4. If leakage is detected, retighten bonnet and flange bolting.

12 Troubleshooting

- 5. Make sure all nuts and bolts are securely fastened.
- 6. If possible, stroke the valve and check for smooth, full-stroke operation. Unsteady stem movement could indicate an internal valve problem.
- 7. Make sure all accessory brackets and bolting are securely fastened.
- 8. Check control valve health parameters:
 - Characteristic curves of the valve with flow
 - Upstream pressure
 - Downstream pressure

into the control room.

Monitor trim and bonnet compo-NOTICE nents. If nominal and actual values differ by more than 5%, maintenance may be required.

Contact customer service department or contract partner for any fault or defect found, otherwise the manufacturer's guarantee shall be rendered null and void and the manufacturer released from any responsibility. If the user performs the repairs, these User Instructions must be adhered to and carried out in a competent manner. Original Equipment Manufacturer spare parts must be used to make the repair.

Defect	No.	Possible Causes	Remedy
Stem does not move	1.1 	• No auxiliary energy supply (pneumatic air) to actuator and accessories (positioner, air filter regulator, solenoid valve, limit switch, and/ or special accessories)	• Pneumatic actuators: Check supply for leaks Check air pressure (usually 87 psig; 6 bar)
	1.2• Mounted access1.3• Pneumatic actual		See User Instructions for accessory manufacturer
			Contact customer service department or contract partner
1.4 • Excessive tightening of the pain ing box		Excessive tightening of the pack- ing box	 Loosen packing follower until valve operates properly
			NOTICE Make sure there are no leaks.
	1.5	Valve trim worn or stuck	Contact customer service department or contract partner
Jerky stem movement	2.1	Damaged stem Contact customer service department or co partner	

Defect	No.	Possible Causes	Remedy
Jerky stem movement	2.2	Actuator not powerful enough	• Compare actuator specifications on the serial plate with operation specifications of the facility. If incompatible, contact customer service department or contract partner
Stem travel less than full stroke (0 to 100 %)	3.1	Air supply pressure too low	• Provide air at the pressure stated on the serial plate (European production only).
	3.2	Pneumatic actuators: Improper handwheel position	Move handwheel to limit position , otherwise contact factory for information.
	3.3	 Improperly adjusted or defective positioner 	Readjust positioner to positioner manufacturer's specification
	3.4	Foreign particles in valve seat or damaged trim	Contact customer service department or contract partner
Excessive valve seat leakage	4.1	Damaged sealing surfaces on valve seat or plug	Contact customer service department or contract partner
	4.2	Foreign particles in seat area	Contact customer service department or contract partner
	4.3	Plug does not close fully	• Refer to No. 3.1 to 3.5
Leaking packing box system	5.1	Compression force on packing box too low	Slightly retighten packing box NOTICE Make sure stem can still move.
	5.2	• Worn packing	Slightly retighten packing box
			NOTICE Make sure stem can still move.
			If the packing does not stop leaking, contact customer service department or contract partner
	5.3	Dirty stem	Clean stem with suitable cleaning agent
	5.4	Damaged stem	Contact customer service department or contract partner
Leaking bonnet gasket	6.1	Gasket compression is too low	Properly retighten bonnet bolting nuts crosswise
	6.2	Gasket defective	Contact customer service department or contract partner
	6.3	Corrosion	Contact customer service department or contract partner
Leaking body	7.1	Corrosion or high velocity related damage	Contact customer service department or contract partner
No limit switch signal	8.1	Power supply to limit switch interrupted	Check power supply (connections, circuit breakers, voltage)
	8.2	Limit switch out of adjustment	Readjust limit switch operating distance; see limit switch data sheet
Unstable positioner	9.1	Defective positioner	• See user instruction of the positioner manufacturer

13 Disassembly and Reassembly

The Valtek FlowTop control valve is allowed to be disassembled and reassembled only by qualified staff - personnel who are familiar with disassembling, reassembling, installation and commissioning of this product, and possess the relevant qualifications in their field of activity. When performing repairs, personnel are to follow these instructions using only **original** equipment manufacturer (OEM) spare parts and recommended special tools to ensure the reliability of the Valtek FlowTop control valve.

Only Flowserve trained and authorized personnel are allowed to repair (disassemble and reassemble) the Valtek FlowTop in hazard areas.

Valves are provided for oil and grease-less service or oxygen service may only disassembled and reassembled in clean rooms (ISO 14644- ISO 8, US FED STD 209 E - M 6.5, or equivalent).

Control valves are pressure vessels.

Improper opening of the valve or actuator can result in bodily injury.

Prior to disassemble and reassemble, we require, that you check the following conditions to reduce the risk of malfunction and safety related incidents.

No.	Important information	Possible malfunction or safety related incident
1	Disregarding these instructions may bring serious or harmful consequences.	Failure to comply with these user instructions will render the manufacturer's guarantee and liability null and void. Unless otherwise agreed, the manufacturer's general terms and conditions of sale shall apply.
2	Always observe system safety instructions when preparing for and performing the repair procedure.	Potential hazards and their sources are under the operator's influence. The operator must observe national and interna- tional environmental regulations for control valve removal from the pipe and cleaning. Permissible exposure limits must be maintained, appropriate personal protective equip- ment must be used and service personnel must be properly instructed in performing the repair procedure.
3	Make sure the pipeline is depressurized and in ambient state, also a suitable rigging (e.g. End- less Sling) and securing devices (e.g. Vee Trough with Stands / Vise) are readily available.	Remove the Valtek FlowTop from the pipeline in a depres- surized and ambient state. Failure to do so can cause seri- ous personal injury. The control valve is not equipped with integral stands, therefore guard against the valve from tipping over. Bodily injuries can be the result. Use appropriate clamps, block- ing or other stabilizing support. Attachment to overhead crane can ensure stability.
4	Confirm that you have the required spare parts at the site.	Not having the full complement of parts, accessories and tools can slow or stop repair work.
5	Confirm that you have the required tools avail- able to manage the disassembly and reassem- bly (See Section 16: Special Tools).	Improper tools and / or improper use of tools can result in personal injury or damage to the parts.
6	Review the serial plate information to identify the valve. The serial number and the part numbers needed are re- quired when ordering spare parts.	A serial plate used for product identification is attached on every control valve (See Section 3: Product Identifica- tion).
7	Do not damage any valve surfaces during repair.	Damaging the stem surface and / or packing area may lead to premature leakages in the packing area.
8	Check all parts for damage such as scoring, deformities, corrosion or overexpansion.	lf in doubt, replace faulty parts. Never reuse gaskets.

Table 9: Basic safety massages for repairing the control valve

After these requirements are confirmed the control valve can be maintained and repaired.

Description of the Procedure

- 1. Disconnect the air supply from the actuator and / or assembled accessories.
- 2. Disassemble the positioner from the valve as necessary (See Figure 7: Remove the positioner).
- 3. Move the actuator to the open (retracted) position.
- 4. Turn the cap screws (240) counter clockwise to loosen (See Figure 8: Remove the actuator).
- 5. Turn the lock nut (113) clockwise to loosen. Keep actuator coupling (345) from turning by securing with a wrench.
- 6. Turn the yoke lock nut (76) counter clockwise to loosen.
- 7. Lift off and store the actuator safely.
- 8. Place the valve body assembly on a table for disassembly.

NOTICE Before you start working, find out which valve variant you are dealing with. There are basically two different constructions that primarily relate to the seat design. This also applies to the bonnets and packing, which are all described individually due to the variety of combinations.

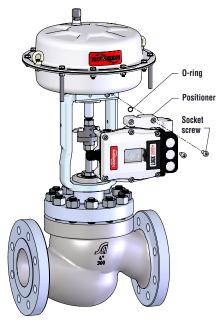


Figure 7: Remove the positioner

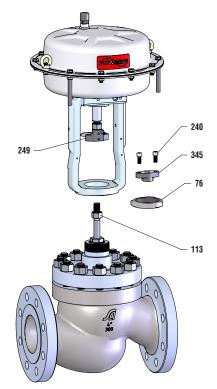


Figure 8: Remove the actuator

ltem	Part	ltem	Part
76	Yoke Lock Nut	249	Actuator Coupling
113	Lock Nut	345	Valve Coupling
240	Socket Head Srew (2x)		

Table 10: Coupling parts identification

Clamped seat ring design - disassembly instructions of the valve body assembly

- 1. Turn the bonnet nuts (114) counter clockwise to loosen.
- Place the Ring Nut Tool (See Section 16: Special Tools) on the stem (51) then slowly lift the bonnet assembly (40) upwards out of the body (1).

WARNING Crushing hazard ! Lifting the bonnet and plug from the control valve involves personal physical risk by falling parts.

Please exercise caution.

NOTICE Exercise care with a pressure balanced plug design. While removing the pressure balanced plug, the retainer may stick to the bonnet then become detached while lifting the plug and stem out of the valve. Secure the seat retainer as you remove the plug and stem.

- 3. Remove the bonnet gasket (58) and seat retainer gasket (56).
- 4. Remove the seat retainer (30), seat ring (20) and profile ring (55).
- 5. Check stressed surface areas for damage such as scoring and deformities.
- 6. To disassemble the bonnet assembly, switch to the relevant description.
- 7. Use a standard brass scraper or other suitable tool to clean bolting. Check for corrosion or any other damage.

Clamped seat ring design - reassembly instructions of the valve body assembly.

 Lubricate all bolt and screw threads and bearing surfaces (stem, underside of the nuts) with a suitable, approved lubricant (See Section 15: Lubricants).

Never allow lubricants to come in contact with the bonnet or sealing surfaces.

- 9. Install a new profile ring (55) and seat ring (20).
- 10. Lower the seat retainer (30) into the body and place it on top of the seat ring (See Figure 9).

11. Lower the plug assembly (50) into the body with the plug touching the seat ring surface.

For details, see the associated bonnet variant (see Page 17 - 19).

- 12. Install the new seat retainer gasket (56) and the new bonnet gasket (58).
- 13. Carefully lower the bonnet (40) onto the plug in the body of the valve (See right column for pressure balanced trim).
- 14. Install and finger tighten the bonnet nuts (114) to the bonnet bolts (108).

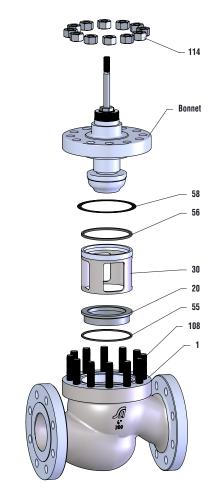


Figure 9: Disassemble / Reassemble the valve

ltem	Part	ltem	Part
1	Body	56	Seat retainer gasket
20	Seat ring	58	Bonnet gasket
30	Seat retainer	108	Stud bolt
(40)	Bonnet	114	Hex nut
55	Profile ring		

Table 11: Valve parts

15. Install the new packing.

NOTICE For details, see the associated packing variant (see Page 19 - 20). Install and push two packing rings consecutively using the Tamping Tool and pre-tighten it. Repeat the procedure with remaining rings. Rotate each ring 180° from the overlapping point. Make sure each ring is clean. Dirty rings result in stem leakage.

16. Tighten the bonnet nuts (114) in four steps - 30%, 60%, 100%, and all around 100% - using a crosswise pattern (See Section 14: Torque Requirements).

NOTICE Check the plug's freedom of movement by lifting it approximately ~10 mm (0.4 inch) between tightenings. Loosen the bolted connection and start again if it proves difficult to move the plug.

- 17. Finish packing follower (80) tightening with a wrench (See Table 7, Page 10, 19 20).
- 18. Replace the pneumatic diaphragm actuator and accessories (See page 21).
- 19. After reinstalling the control valve in the pipeline, perform 3 full strokes and check the tightening of the packing follower and bonnet bolting.

NOTICE Do not over tighten the packing. Over tightened packing may produce higher friction and reduce product service life.

20. Log the maintenance interval and the work performed.

Screwed seat ring design - disassembly instructions of the valve body assembly

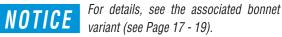
- 1. Turn the bonnet nuts (114) counter clockwise to loosen.
- Place the Ring Nut Tool (See Section 16: Special Tools) on the stem (51) then slowly lift the bonnet assembly (40) upwards out of the body (1).

WARNING the bonnet and plug from the control valve involves personal physical risk by falling parts.

Please exercise caution.

NOTICE Exercise care with a pressure balanced plug design. While removing the pressure balanced plug, the retainer may stick to the bonnet then become detached while lifting the plug and stem out of the valve. Secure the seat retainer as you remove the plug and stem.

- 3. Remove the bonnet gasket (58).
- 4. Remove the seat ring (20) and profile ring (55). **NOTICE** Do a visual inspection. Only remove parts that are to be replaced.
- 5. Check stressed surface areas for damage such as scoring and deformities.
- 6. To disassemble the bonnet assembly, switch to the relevant description.
- 7. Use a standard brass scraper or other suitable tool to clean bolting. Check for corrosion or any other damage.


Screwed seat ring design - reassembly instructions of the valve body assembly.

8. Lubricate all bolt and screw threads and bearing surfaces (stem, underside of the nuts) with a suitable, approved lubricant (See Section 15: Lubricants).

NOTICE

Never allow lubricants to come in contact with the bonnet or sealing surfaces.

- 9. Install a new profile ring (55) and seat ring (20) if previously disassembled.
- 10. Lower the plug assembly (50) into the body with the plug touching the seat ring surface.

- 11. Install the new bonnet gasket (58).
- 12. Carefully lower the bonnet (40) onto the plug in the body of the valve.
- 13. Install and finger tighten the bonnet nuts (114) to the bonnet bolts (108).

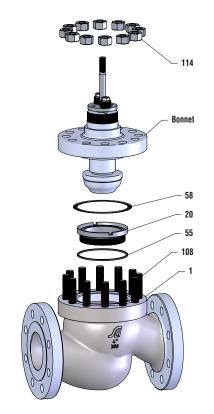


Figure 10: Disassemble / Reassemble the valve

ltem	Part	Item	Part
1	Body	58	Bonnet gasket
20	Seat ring	108	Stud bolt
(40)	Bonnet	114	Hex nut
55	Profile ring		

Table 12: Valve parts

14. Install the new packing.

NOTICE For details, see the associated packing variant (see Page 17 - 19). Install and push two packing rings consecutively using the Tamping Tool and pre-tighten it. Repeat the procedure with remaining rings. Rotate each ring 180° from the overlapping point. Make sure each ring is clean. Dirty rings result in stem leakage.

15. Tighten the bonnet nuts (114) in four steps - 30%, 60%, 100%, and all around 100% - using a crosswise pattern (See Section 14: Torque Requirements).

NOTICE Check the plug's freedom of movement by lifting it approximately ~10 mm (0.4 inch) between tightenings. Loosen the bolted connection and start again if it proves difficult to move the plug.

16. Finish packing follower (80) tightening with a wrench

(See Table 7, Page 10, 19 - 20).

- 17. Replace the pneumatic diaphragm actuator and accessories (See page 21).
- 18. After reinstalling the control valve in the pipeline, perform 3 full strokes and check the tightening of the packing follower and bonnet bolting.

NOTICE Do not over tighten the packing. Over tightened packing may produce higher friction and reduce product service life.

19. Log the maintenance interval and the work performed.

Standard and Extension Bonnet design - disassembly instructions

- 1. Remove the plug assembly (50) from the bonnet (40).
- 2. To disassemble the packing assembly, switch to the relevant description (see Page 19 20).

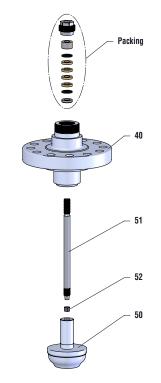


Figure 11: Disassemble / Reassemble the bonnet

ltem	Part	ltem	Part
40	Bonnet	51	Stem
50	Plug	52	Lock bushing

Table 13: Bonnet parts

Standard and Extension Bonnet design with a pressure balanced trim - disassembly instructions

- 1. Remove the sleeve (30) from the plug assembly (50).
- 2. Remove the plug assembly (50) from the bonnet (40).
- 3. Remove the backing ring (66) and O-ring (65) from the plug (50).

The disassembly and reassembly of the plug and stem is only possible with spe-

- 4. To disassemble the packing assembly, switch to the relevant description (see Page 19 - 20).
- 5. Reassemble the pressure balanced plug with new backup rings (66) and a new O-ring (65).

Bellows Seal Bonnet design NPS 1/2 - 2 - disassembly instructions

- 1. To disassemble the packing assembly, switch to the relevant description (see Page 19 - 20).
- 2. Turn the hex nuts (110) counter clockwise to loosen.
- 3. Remove the head (40) and upper head gasket (59).
- 4. Lower the plug (50) into a three jaw-chuck with soft brackets and turn the plug from the stem and bonnet (51 / 5) counter clockwise to loosen then move the bellows seal assembly up and out then also remove the lower head gasket (59).

The bolting between plug and stem IC E NO are secured against twisting. The bellows seal assemblies are secured with a lock bushing (52). The lock bushing (52) usually remains in the plug (50) and can be reused. If the plug (50) is damaged and replaced, a new lock bushing (52) must be used.

Packing

110 **4**N

59

106

5

52

50

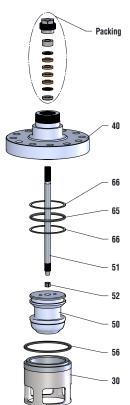
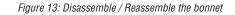



Figure 12: Disassemble / Reassemble the bonnet

Item	Part	Item	Part
30	Sleeve	52	Lock bushing
40	Bonnet	56	Seat retainer gasket
50	Plug	65	O-ring
51	Stem	66	Backup ring

110 Table 15: Bonnet parts

	ltem	Part	ltem	Part
1	5	Bonnet	51	Stem
	40	Head	52	Lock bushing
	42	Plug screw	59	Head gasket
	48	Plug gasket	106	Stud bolt
_	50	Plug	110	Hex nut

18

Bellows Seal Bonnet design NPS 3 - 6 - disassembly instructions

- 1. To disassemble the packing assembly, switch to the relevant description (see Page 19 20).
- 2. Turn the hex nuts (110) counter clockwise to loosen.
- 3. Remove the head (40) and head gasket (59).
- 4. Remove the hex nut (110) counter clockwise to loosen then pull off the seal carrier (91) and remove the profile ring (60).
- 5. Pull the plug assembly (50) out downwards of the bonnet (5).

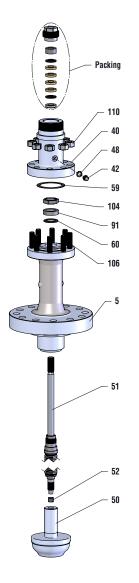


Figure 14: Disassemble / Reassemble the bonnet

ltem	Part	ltem	Part
5	Bonnet	59	Head gasket
40	Head	60	Profile ring
42	Plug screw	91	Seal carrier
48	Plug gasket	104	Hex nut
50	Plug	106	Stud bolt
51	Stem	110	Hex nut
52	Lock bushing		

Table 16: Bonnet parts

General:

Check stressed surface areas for damage such as scoring or deformities.

Use a standard brass scraper or other suitable tool to clean all bolting. Check for corrosion or any other damage.

Always replace damaged parts with original spare parts.

The reassembly takes place in reverse order.

NOTICE Before you start working, find out which packing variant you are dealing with. There are basically two different constructions. Internal Packing and external Packing design.

Internal packing design, unloaded - disassembly instructions

- 1. Turn the packing follower (80) counter clockwise to loosen and remove the upper stem guide (87).
- 2. Use an Packing Driver Tool to remove the packing box ring (93) and packing (88) by knocking out from below.

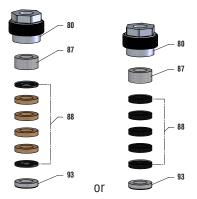


Figure 15: Disassemble / Reassemble the packing

ltem	Part	ltem	Part
80	Packing follower	88	Packing
87	Upper stem guide	93	Packing box ring

Table 17: Packing parts

<u>19</u>

Internal packing design, live loaded - disassembly instructions

- 1. Turn the packing follower (80) counter clockwise to loosen, remove the belleville springs (138) and upper stem guide (87).
- 2. Use an Packing Driver Tool to remove the packing box ring (93) and packing (88) by knocking out from below.

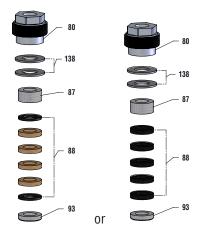
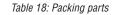



Figure 16: Disassemble / Reassemble the packing

ltem	Part	ltem	Part
80	Packing follower	93	Packing box ring
87	Upper stem guide	138	Belleville spring
88	Packing		

External packing design, live loaded - disassembly instructions

- 1. Turn the nuts (117) counter clockwise to loosen, remove the washer (112) belleville springs (138) and gland flange (80).
- 2. Use an Packing Driver Tool to remove the packing box ring (93) and packing (88) by knocking out from below.

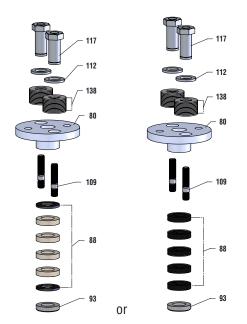


Figure 17: Disassemble / Reassemble the packing

ltem	Part	ltem	Part
80	Gland flange	112	Washer
88	Packing	117	Nuts
93	Packing box ring	138	Belleville spring
109	Studs		

Table 19: Packing parts

MegaStream noise reduction and CavStream anti-cavitation trims:

Structurally, there is no difference between a seat retainer and a MegaStream retainer; both are assembled and disassembled identically. Follow instructions in Section 13.

Figure 18: MegaStream

CavStream should be treated the same as the plug assembly. Follow same instructions as noted on pages 13 through 18.

Figure 19: CavStream

Care should be taken to observe any wear on the CavStream plug head.

20

Reassemble the actuator and positioner onto the valve:

1. Mount the pneumatic diaphragm actuator onto the bonnet and tighten the yoke lock nut (76) clockwise (see Section 14: Required Torques).

NOTICE

Position the actuator with the vent plug positioned at the rear.

- 2. Move the actuator to the open position.
- Screw in the lock nut (113) and actuator coupling (345) and adjust the distance between the valve coupling (345) and actuator coupling (249) by adjusting the stroke length.

Size	Stroke						
1/2" - 2"	20 + 0,5 mm	0.787 + 0.02 in.					
3" - 4"	40 + 0,5 mm	1.574 + 0.02 in.					
6"	60 + ^{0,8} mm	2.362 + 0.03 in.					

Table 20: Stroke adjustment length

4. Adjust the valve coupling (345) until the actuator coupling (249) lines up.

Press the stem / plug into the seat by hand.

- 5. Move the actuator to the close position and install the cap screws (240).
- 6. Secure the lock nut (113). Keep actuator coupling (249) from turning by securing with a wrench.
- 7. Reassemble the positioner on the valve as necessary (see relevant accessory User Instruction).
- 8. Connect the valve into the pipeline (See Section 9: Installation).
- 9. After reinstalling the control valve into the pipeline, perform three full strokes and check the tightness of the packing follower and bonnet bolting (See Section 10: Valve Quick-Check).
- 10. Log the maintenance interval and the work performed.

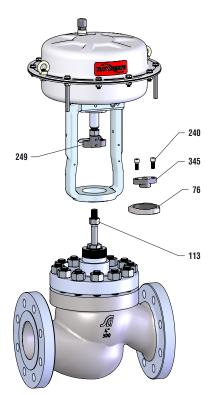


Figure 20: Reassemble the actuator

ltem	Part	lten	ı	Part
76	Actuator Lock Nut	249)	Actuator Coupling
113	Lock Nut	345	,	Valve Coupling
240	Socket Head Screw (2x)			

Table 21: Coupling parts identification

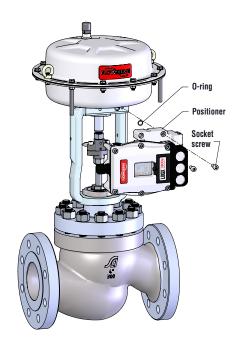


Figure 21: Reassemble the positioner

14 Torque Requirements

Presssure	;	Torque Requirements for BONNET NUTs (114) per nominal diameter									
Class		1/2"	3/4"	1"	1 1/2"	2"	3"	4"	6"		
Class 150 ¹⁾	Nim		15		17	22	26	46	76		
Class 300 1)	Nm				21	27	43	76	146		
Class 150 ¹⁾	0.11	· · · · ·	44		13	16	19	34	56		
Class 300 1)	ft lb		11		16	20	32	56	108		

 $^{\rm 1)}$ V750 is designed for Class 150 while V752 is designed for Class 300 $\,$

Presssure	;		Torque Requirements for HEAD NUTs (110) per nominal diameter														
Class		1/2"	3/4"	1"	1 1/2"	2"	3"	6"									
Class 150	Nm		13		14		3	24									
Class 300			10		12		2	5	46								
Class 150	ft lb		9.6		10.	3	2	2	17.7								
Class 300			7.4		8.9	1	18	.4	34								

Presssure	9		Torque Requirements for SCREWED SEATs (20) per nominal diameter														
Class		1/2"	3/4"	1"	1 1/2"	2"	3"	4"	6"								
Class 150	Nm		40		100	162	457	841	1653								
Class 300			40		100	102	437	041	1055								
Class 150	ft lb		30		74	120	337	600	1 219								
Class 300	ן ונוט		30		74	120	337	620	1219								

Presssure			Torque	Requirements f	or PLUG and S	STEM (50, 51)	per nominal di	ameter	
Class		1/2"	3/4"	1"	1 1/2"	2"	3"	4"	6"
Class 150 / 300	Nm			40			8	0	170
Class 150 / 300	ft lb			30			5	9	125

	Torque Requirements for Internal Packing System													
Wrend	h Size	Minimum preload	Maximum preload											
SW 24	~ 15/16 AF		Ope, three quarter turn											
SW 32	~ 1 1/4 AF	Quarter turn intervals until leakage stops	One, three-quarter turn											
SW 46	~ 1 13/16 AF	310µ3	One complete turn											

	Torque Requirements for External Packing System	
Minimum preload	Maximum preload	Figure
Is marked by the lower edge of the nut (117)	Is marked by the groove in the nut (117)	117 maximal preload (groove) minimal preload (edge)

NOTICE The yoke lock nut (76) should be tighten with a rounded chisel and a 1,5 kg (3.5 lbs) hammer before the 'kickback' effect occurs. The coupling part bolting should be tighten properly by hand in accordance with the relevant technical standards.

<u>22</u>

15 Lubricants

			Valve - v tempe		Actuator - tempe			
		Application site	Standard	Low	Standard	Optionally		
			-40°C to +425°C	-60°C to -41°C	-40°C to 80°C	-60°C to +80°C		
Static lubrication	Valve:	Threads of the stem (2.2/2.4) and twist-lock of the stem (2.3), thread of the seat (2.1) and hex nut (2.6); Bonnet-bolting (1.3/1.4) and head-bolting (3.17/3.16) Threads of the packing-follower (3.4), coupling (5.2, 5.1, 5.3, 5.5) and yoke	Klüberpaste [Chesterton		N/	A		
/		locknut (5.10)						
release agents	Actuator:	Threads of the stem bushing flange bolting (6.45) , 0-ring $(6.9, 6.45)$, threads of the stem (6.12) and actuator casing bolting $(6.3.1, 6.3.2, 6.4)$	N/	'A	Klüber Unisilikon L250L	Klüber Unisilikon L250L		
Initial	Valve:	Guide of the plug (2.2), V-ring balancing (2.12)	HEL 46-450	without	N/	Δ		
lubrication		Bellows anti-twist device (2.4)	[785 (FG)]					
on sliding surfaces	Actuator:	O-ring's (6.17, 6.50, 6.10, 6.51) and guide (6.8.2)	N/	Ά	Klüber Unisilikon L250L	Klüberalfa YV 93-1202		

16 Special Tools

Special Tool	Use													
Packing — Packing	Packing Tamping Tool													
Centering Tamping	Recommended tool for assembling.													
Tool Tool	Description		Part N°											
		Stem Ø 12 mm	Stem Ø 16 mm	Stem Ø 20 mm										
	Packing Centering Tool	329834	329836	329844										
	Packing Tamping Tool	329835	329842	329843										
	Ring Nut Tool													
	Recommended tool for disassembling and reassembling.													
	Lifting eye nut according	to DIN 582 - size M12	, M16, M20											
	Packing Driver Tool													
	Recommended tool for disassembling.													
	Description		Dimension (Brass rod)											
		Stem Ø 12 mm	Stem Ø 16 mm	Stem Ø 20 mm										
	Packing Driver Tool	Ø 15 ⁻¹ x 250 mm	Ø 21 ⁻¹ x 300 mm	Ø 25 ⁻¹ x 400 mm										

17 Disposal

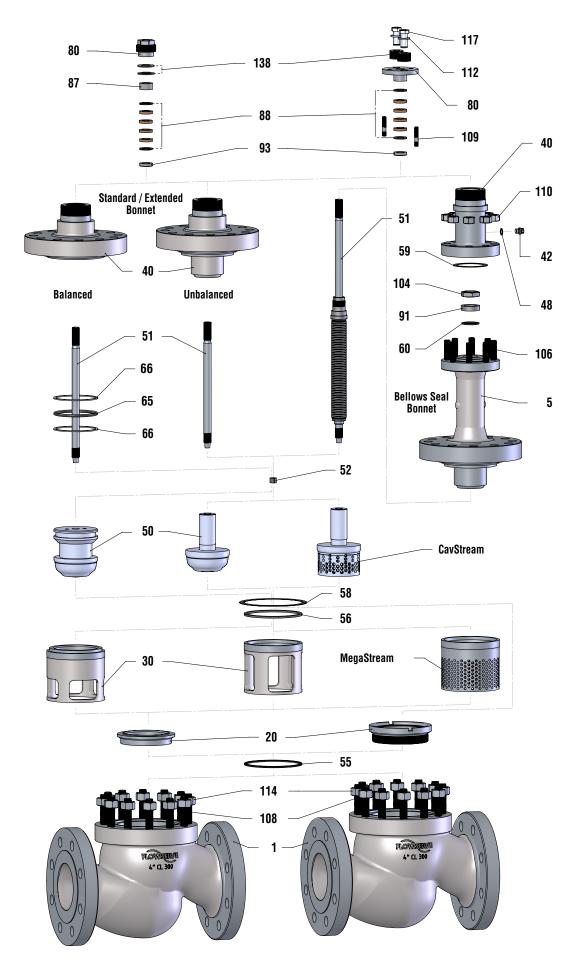
Up to 95 % of the FlowTop control valve is metal. The remaining materials are synthetic, rubber, polytetrafluoroethylene (PTFE), graphite, paint, and lubricants.

The valve should be professionally disassembled and reas-

sembled. Metal parts should be scrapped, with the remaining materials disposed of according the national conditions.

Peripheral units (accessories) should be recycled according the relevant manufacturer's User Instructions.

NOTICE Potential hazards and their sources are under the operator's influence. The operator must observe national and international environmental conditions for control valve removal from the pipeline and cleaning. Permissible limit values must be maintained to ensure suitable protective measures; service personnel must be properly instructed in performing the disassembly and reassembly procedure.


18 Parts List

 $^{1)}\,$ see page 18, $^{2)}\,$ see page 14 and page 21

ltem	Part	A	vailable Material	s								
1	Body	A216 WCC	A351 CF8M	A351 CF3M								
5	Bonnet	A105 or WCC	F316 or CF8M	F316L or CF3M								
20	Seat ring	410SS	316SS	316L								
30	Seat retainer	410SS	316SS	316L								
	Sleeve 1)	410HT	316SS (nitrided)	316L (nitrided)								
40	Bonnet / Head	A105 or WCC	F316 or CF8M	F316L or CF3M								
42	Plug screw		A2									
48	Plug gasket		Pure Graphite									
50	Plug	410SS	316SS	316L								
51	Stem	17-4PH (con. H1150D)	316L (strain	hardened level 2)								
52	Lock bushing		316SS									
55	Profile ring		Pure Graphite									
56	Seat retainer gasket	31	6SS - Gaphite Lay	/er								
58	Bonnet gasket	31	6SS - Gaphite Lay	/er								
59	Head gasket		Pure Graphite									
60	Profile ring		Pure Graphite									
65	O-ring ¹⁾	Buna-N, Vit	on, EPDM, Kalrez	or Chemraz								
66	Backup ring 1)	PTFE or PEEK										
76	Yoke lock nut 2)	316SS										
80	Packing follower		316SS									
87	Upper guiding		316SS (nitrided)									
88	Packing		PTFE or Graphite									
91	Seal carrier		316 SS									
93	Packing box ring		316SS									
104	Hex nut		316 SS									
106	Stud bolt	A193 B7	A193	B8 CI 2								
108	Stud bolt	A193 B7	A193	B8 CI 2								
109	Studs		A193 B8M2 CI 2B									
110	Hex nut	A194 2H	A19	94 8								
112	Washer		316SS									
113	Lock nut 2)	316SS										
114	Hex nut	A194 2H	A19	94 8								
117	Nuts		316L									
138	Belleville spring		1.4310									
240	Socket head screw 2)		316SS									
249	Actuator coupling 2)		316SS									
345	Valve coupling ²⁾	316SS										

The specified materials may differ from the delivered product in detail. So they are for rough orientation only. If you need the materials actually used orient yourself to the bill of materials (BOM).

flowserve.com

Space for personal notes

	GISUII													

Space for personal notes

-																		
	1			1				1							1			

Flowserve Corporation

No. 35, Baiyu Road Suzhou Industrial Park Suzhou 215021, Jiangsu Province, PRC Phone: +86-512-6288-1688 Fax: +86-512-6288-8737

Flowserve Pte Ltd.

No. 12 Tuas Avenue 20 Singapore 638824 Phone: +65 6879 8900 Fax: +65 6862 4940

Flowserve Corporation

Flow Control Division 1978 Foreman Drive Cookeville, Tennessee 38501 USA Phone: +931-432-4021 Fax: +931-432-5518

Flowserve Corporation

Flow Control Division 1350 North Mountain Springs Parkway Springville, Utah 84663-0913 USA Phone: +801-373-3028 Fax: +801-489-2228

Flowserve Flow Control (UK) Ltd.

Burrell Road Haywards Heath West Sussex United Kingdom RH16 1TL Phone: +44-1444-314400 Fax: +44-1444-314401

Flowserve Ahaus GmbH

von-Braun-Str. 19a 48683 Ahaus Phone: +49-2561-686-119 Fax: +49-2561-686-109

Flowserve Flow Control GmbH

Actuators and Automation Center Germany Rudolf Plank Str. 2 D-76275 Ettlingen Germany Phone +49 (0)7243-103-0 Fax +49 (0)7243-103-222

Flowserve Flow Control Benelux BV

Rechtzaad 17 4703 RC Roosendaal NB Netherlands Phone: +31-165-598-800 Fax: +31-165-555-670

Flowserve India Controls Pvt Ltd.

Plot No. 4, 1A, E.P.I.P, Road No. 8 Whitefield, Bengaluru Karnataka 560066, India

Flow Control Division Brazil

Rua Tocantins, 128 09580-130 - São Caetano do Sul - SP Brazil

Flowserve Control Valves GmbH

Kasernengasse 6 9500 Villach AUSTRIA Telephone: +43 (0) 4242 41 181 - 0 Fax: +43 (0) 4242 41 181 - 50

FCD VLEEIM1485-04 (EN/A4) November 2022

Flowserve Corporation has established industry leadership in the design and manufacture of its products. When properly selected, this Flowserve product is designed to perform its intended function safely during its useful life. However, the purchaser or user of Flowserve products should be aware that Flowserve products might be used in numerous applications under a wide variety of industrial service conditions. Although Flowserve can provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser/user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of Flowserve products. The purchaser/user should read and understand the Installation Instructions included with the product, and train its employees and contractors in the safe use of Flowserve products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only and should not be considered certified or as a guarantee of satisfactory results by reliance thereon. Nothing contained herein is to be construed as a warrantly or guarantee, express or implied, regarding any matter with respect to this product. Because Flowserve is continually improving and upgrading its product design, the specifications, dimensions and information contained herein are subject to change without notice. Should any question arise concerning these provisions, the purchaser/user should contact Flowserve Corporation at any one of its worldwide operations or offices.

©2022 Flowserve Corporation. All rights reserved. This document contains registered and unregistered trademarks of Flowserve Corporation. Other company, product, or service names may be trademarks or service marks of their respective companies.